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Kaden’s problem of the roll-up of an initially planar semi-infinite vortex sheet with a 
parabolic distribution of circulation is extended to include vortex sheets exhibiting a 
general power law circulation distribution, resulting in the presence of a power law, 
and in one case a logarithmic-like, velocity-field singularity. Both semi-infinite and 
infinite initially plane sheets with this property are considered and the form of their 
roll-up in the similarity plane, into single and double-branched spirals respectively, 
is obtained numerically. Estimates of the Betz constant obtained from the solutions 
are found to be significantly different from values predicted by the Betz approximation. 

1. Introduction 
The evolution with time of an initially plane semi-infinite vortex sheet with a para- 
bolic distribution of circulation was first treated by Kaden (1931). He postulated that 
the edge of the initially flat sheet rolled up into a continuous spiral and deduced from 
dimensional arguments that this spiral must always retain the same shape but must 
grow with time t as t) .  Kaden further showed that towards the centre of the ever 
tightening spiral, the circulation distribution became asymptotic to the initial para- 
bolic flat sheet form, but with the spacial ordinate from the sheet edge x replaced by 
pr,  where r is the radius from the spiral centre and is an unknown dimensionless 
constant whose value can be determined only by detailed dynamical considerations. 
The significance of Kaden’s analysis is clear when we note that to agood approximation, 
Kaden’s problem describes the inviscid roll-up, near the wing tips, of the vortex sheet 
shed by an elliptically loaded wing a t  small incidence in steady level flight. I ts  useful- 
ness cannot be fully realized, however, until the value of B is known, since /I, physically, 
is a measure of the degree to which successive turns of the innermost spiral are com- 
pressed during the roll-up process (Saffman & Baker 1979). It is important to know 
/3 since Kaden’s asymptotic solution may then be interpreted as the inviscid outer 
limit for the merged core of the vortex forming during the roll-up process. This is 
applicable both to  laminar (Moore & Saffman 1973) and to turbulent (Phillips 1981) 
trailing vortices. 

The first estimate for p was based on an approximation of Betz (1932), that during 
roll-up the angular impulse of vorticity, relative to the sheet’s centre of vorticity, 
remains constant, leading to p = #. A more precise estimate has been given by Pullin 
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( 1978), who obtained a numerical solution of the nonlinear integro-differential equation 
which follows from the application of Kaden’s dimensional arguments (in the form 
of a similarity solution) to the full initial value problem for the sheet motion. This 
solution confirmed Kaden’s postulate that the initially plane vortex sheet rolled up 
smoothly into a tightly wound spiral that closely approximated the asymptotic form 
he predicted, even over the outermost turn. It also provided a convincing estimate for 
the Eetz constant, p = 2.02. 

But the spanwise circulation distribution on a lifting wing is affected by the wing 
shape, profile, chord and angle of attack (Prandtl & Tietjens 1957) and is therefore 
not always elliptic. Moreover, for a wing composed of spanwise elements whose profiles 
are geometrically similar and a t  equal angles of attack, it follows that the circulation 
is proportional to the chord. Thus, we might expect the circulation distribution on a 
delta wing for example, to be approximately linear. Experimental evidence of a 
relationship between wing shape and circulation distribution is produced in Kiiche- 
mann (1953). The pertinent question is can the essence of Kaden’s argument for roll 
up be extended to vortex sheets with other spanwise distributions of circulation ‘2 
We suggest that i t  can, provided that the velocity field due to the sheet is singular a t  
some point along the sheet length. Moore & Saffman (1973) first realized this, and 
went on to find the asymptotic form for the innermost spiral of rolling-up vortex 
sheets with more general initial spanwise distributions of circulation, viz. r K IxIp, 
where 0 < p < 1. Here, again the circulation distribution in the asymptotic rolled-up 
vortex core follows by putting x = p p r ,  but as before the precise value ofp, remained 
unknown, although the Betz approximation indicated that /3, = I + p .  

The purpose of the present work is to generalize the classical Kaden’s problem to the 
roll-up of both semi-infinite and of infinite sheets with initial circulation distributions 
of the general form IxJp, and as part of this process we shall estimate pp. The roll-up 
of the infinite sheet into a double-branched spiral is of interest for two reasons. First, 
this case is directly relevant to some experimental studies of trailing vortices in which 
a ‘differential’ aerofoil spans the wind tunnel, one half being mounted at  an angle of 
incidence equal and opposite to that of the other (Hoffman & Joubert 1963; Poppleton 
1971 ; Graham, Newman & Phillips 1974). This results in a two-branch stable trailing 
vortex. Second, it will be shown that a certain limit of the present class of infinite sheets 
corresponds to the case discussed by Jiminez (1977, 1980) as a possible similarity model 
for the nonlinear instability observed in plane shear layers. The procedure adopted 
in the present work closely parallels that of Pullin (1978) henceforth called I, and 
except where otherwise stated, the notation, formulation and method of solution 
are as in I. 

2. Formulation and solution 
2.1. A generalization of Kaden’s problem 

We consider the motion for t 0 of both semi-infinite plane sheets, given a t  t = 0 by 
z = x + Oi,  - co < x 6 0,  and infinite plane sheets in - co < x < co. The initial circu- 
lation distributions are given by 
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where a is a dimensional constant and p is a dimensionless constant which lies in the 
range 0 < p < 1, The parameter S takes the value S = 0 for the semi-infinite sheet and 
S = 1 for the infinite sheet. In both cases the strength density y = - d r / d x  exhibits 
an IxIP-1 like singularity a t  x = 0 so that for S = 0 and 1, the sheet may be expected to 
roll-up into single-branched and double-branched spirals respectively. For 6 = 0 the 
case p = t was treated in I. The limiting case p = 1 indicates a linear F distribution. 
Here the y singularity vanishes but it may be easily shown that the velocity field 
remains singular as log 1x1, x --f 0. The other limiting case p = 0 represents a constant 

distribution which has no strict physical meaning (Moore & Saffman), but a distri- 
bution in which p + 0 can be achieved on a rectangular wing of high aspect ratio 
(Betz 1919). The trailing vortex studied by Hoffman and Joubert corresponds most 
nearly to S = 1, p = $ while that of Graham et al. corresponds nearly to 6 = 1, p = 4. 
For S = 1 and p = 1 both the y and the velocity singularities vanish so that the plane 
sheet is of constant strength everywhere. This is the case studied by Jiminez. 

The single branch sheet shape for 6 = 0 and the left branch for S = 1 shall be de- 
scribed by zo( r, t ) ,  3 0. For 6 = 1, the right branch is given by - z,,( I?, t ) ,  obtained by 
rotating the left branch through m radians. Thus, two-branch antisymmetry for 
6 = 1 allows us to deal only with the left branch, affording significant simplification. 
The equation of motion for zo( r, t )  is then 

(Z,, denotes the complex conjugate of zo),  with the initial condition obtained from (1) 
as 

zo(r, 0) = - ( i r / a ) l / p .  (3) 

zo(r, t )  = (a t )1 / (2 -p )w(~ ) ,  (4) 

The similarity solution takes the form 

where o(h)  = <(A)  + iy(h) is the non-dimensional sheet-shape function and the inde- 
pendent variable h is given by 

r 
= a2/(2-P)tP/(2-23) . ( 5 )  

The integro-differential equation for w ( h )  then follows from ( 2 )  as 

1 
2 - P  w + w(h‘) ’ 

with 
U P  

@(A)  = - (t) +small correction ( 7 )  
. .  

a s h - t c o .  

2 . 2 .  Asymptotic behaviour of solutions 

(i) h -+ 00. The second term in the expansion given by (7 )  may be obtained by sub- 
stituting ( 7 )  into the left-hand side of (6) and the first term of ( 7 )  into the integrals on 
the right-hand side. After evaluating the integrals by residues, we find that 
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as h + co. Returning to physical co-ordinates i t  may be readily verified that the second 
term in (8) represents the leading-order contribution to  the down-wash induced by 
distant parts of the sheet in the vicinity of the rolled-up spiral. For 6 = 0, this con- 
tribution is in the + and - y directions for p > & and p < 4 respectively, vanishing 
identically for p = 4, while for 6 = 1, this contribution is always in the - 7 direction. 

(ii) Semi-in$nite sheet, p -+ 1. It is clear that in the limit p + 1, the expansion 
given by (8) remains regular for 6 = 1 but fails for 6 = 0. The reason is that the self- 
inductive velocity of the semi-infinite sheet, given effectively by the integral on the 
right side of (6), diverges as ip cot (pn )  as p + 1.  The sheet behaviour in this limit 
may be nevertheless obtained by introducing the transformation for 6 = 0 suggested 
by (8), 

p = w+ipcot(pn), (9) 

where p = [’ + iy‘. Substituting (9) into (6), adding the identity 

f ip cot ( p n )  ($)l--liP = 0 
‘sw dh’ 
,2ni 0 (h/2)l/P - (h’/2)1/P 

to the right side of the result, and taking thep -+ 1 limit leads to 

A solution to (10) may be interpreted as the roll-up of a constant strength ( p  = 1 )  
semi-infinite sheet as seen in a framework moving with the infinite self-inductive 
velocity due to parts of the sheet remote from the spiral (see appendix for further 
discussion). The leading terms in the large h expansion for p(h), ( p  = I ) ,  may be ob- 
tained either by following the procedure leading to (8) or by direct substitution of 
(9) into (8), to yield 

i 
P ( 4  = - (@) - - 77 log (h/3)  + . , . , 

the order of the limits being understood as p -+ 1, h --f m. Equation (1 1) shows that 
the asymptotic sheet shape in the p plane in this case is given by y’ = -log lc’l/n, 

(iii) h + 0. The small h solution applies in the innermost rolled-up portion of the 
spiral. Here the leading term in the expansion of the solution to (6) takes the form 
(see Moore & Saffman 1973; Moore 1975), 

5 ’ 3  -m* 

w ( h ) - w ( 0 )  = a,hl/pexp 

where up and e are constants to be determined. Equation (12) may be shown to be 
valid in the limit p -+ 1 for 6 = 0. The Betz constant may be related to ap by using the 
general definition given by Moore & Saffman (1973) in conjunction with ( 1 2 )  to yield 

p P = (21/Pap)4. (13) 
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FIGURE 1. __ , self similar vortex sheet shapes in p = F + i f  plane, single-branch solutions, 
8 = 0, (a)  p = 0.05, (b )  p = 0.333, (c )  p = 0,667, (d )  p = 1.0. ---, asymptotic shn.pe, f' + -a 
(out of range for ( c ) ) .  

2.3. Numerical solution 

As in I, we divide the vortex sheet in the w plane into three sections and approximate 
(6) in each, the sections being as follows: 

(i) A section described by (8) and defined by m > h 3 A, > 0. This section may be 
regarded as that portion of the sheet which is remote from the spiral. 

(ii) An intermediate section defined by A, > h A, > 0, w-hich includes a sub- 
stantial portion of the rolled-up sheet. This part of the sheet is further divided into N 
straight subsections. 

(iii) An inner part A, > h > 0 over which we assume that the sheet approximates 
the tightly wound asymptotic spiral of (12). 

Now when p = 4 and S = 0, we can express the contribution from section (i) of the 
sheet, to the integral in (6)) in closed form (equation ( I 2 b )  in I); this follows from (7).  
But when p + + and 6 = 0 and for all p a t  6 = 1, (8) suggests that the sheet may de- 
viate significantly from its original planar position, even for large A ,  and it is no longer 
possible to express this contribution in simple closed form. For the present work then 
(8) was used directly to  determine section (i)'s contribution to the integral which was 
evaluated numerically, after a suitable transformation, by 32-point Gaussian quad- 
rature. Note that for 6 = O,w(O)  is unknown and was fixed in I by satisfying an 
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I' 
0.05 
0.1 
0.2 
0.3 
0.333 
0.4 
0.5 
0.6 
0.667 
0.7 
0.8 
0.9 
1.0 

6; 
- 0.0340 
- 0-0667 
- 0.1290 
- 0.1889 
- 0'2084 
- 0.2477 
- 0'3062 
- 0.3671 
-0'4105 
-0.4312 
- 0.5001 
- 0.5744 
- 0.6564 

71; 
0.3518 
0.3809 
0.4274 
0.4600 
04691 
0.4792 
0.4875 
0-4883 
0.4856 
0.4808 
0.4656 
0.4409 
0.4185 

E 

- 1.8 
- 1.9 
- 2.3 
- 2.6 
- 2.7 
- 3.0 

2.7 
2.1 
1.5 
1.3 
0.30 

- 0.87 
- 3.1 

a, 
9.15 x lo-' 
8.70 x 1 0 - 4  
2.39 x lo-' 
6.53 x lo-' 
7-80 x lo-' 
0.101 
0.124 
0.135 
0.138 
0.139 
0.137 
0.132 
0.125 

P, 
1.04 
1.12 
1.31 
1.52 
1-60 
1.75 
2.02 
2.33 
2.56 
2.68 
3.07 
3.54 
4.02 

TABLE 1. Positions of spiral centre and values of constants in small h 
asymptotic solution for single-branched solutions, S = 0. 

approximate integrated form of (6) (equation (17)  in I) in (0, hAv). This carries over to 
the present work for 6 = 0. For the double-branch case, antisymmetry requires that 
o ( 0 )  = 0, which is consistent with the vanishing of the present equivalent of (17) in 
I over section (iii) of the sheet for 6 = 1. The solution to  (10)  for 6 = 0 , p  = 1 was 
obtained as for (6)  but using (1  1) to evaluate the contribution to the integral on the 
right side, from section (i) of the sheet. 

3. Results and discussion 
3.1. Xingle branched spirals 

Calculations were performed for values of p in the range 0-05 < p < 1.0. I n  all cases 
A' = 97.  The spiralled sheet shapes in the p-plane for various values of p are shown in 
figure 1 while table 1 gives the vortex centre positions p(0)  = (L+ iyh  in addition to  
estimates for up, e and / I p .  The results for / I p  are considerably different from those 
found using the Betz approximation. This is possibly because the effect of the induced 
velocity from distant parts of the sheet on the rate of change of angular momentum 
within circles centred on the spiral centre, increases with increasing p (see equation 
B4 of Moore & Saffman), which is consistent with the present solutions. In  the Betz 
approximation, however, this effect is neglected. The motion of the semi-infinite sheet 
withp < 1 can be related to the small t behaviour of corresponding finite vortex sheets 
of the type shed by a general lifting wing. The details of this relationship are given in 
the appendix. 

3.2. Double branchcd spirals 

For the infinite plane sheet, detailed calculations were performed for p = 0.05, 0.3, 
0.5, 0.7  and 0.95.  In figure 2, which shows selected sheet shapes (both branches) in the 
(0 = 6 + i y  plane, it may be seen that for p = 0.05 and 0.5, the inner rolled-up core 
closely approximates the axisymmetric spiral given by (12) .  As p -+ 1 the solution 
shows increasing ellipticity. For this reason no e entry is given in table 2 for p = 0.7 
and 0.95. The limit p + 1 corresponds to that discussed by Jiminez (1977,  1980) who 
reported ronsiderable difficulty in seeking a solution to (6). In fact Jiminez was not 
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-1.7 -0.8 -0.4 0 0.4 0.8 1.2 

FIGURE 2. ___ , self similar vortex sheet shapes in w = [ + i ~  plane, double-branch 
solutions, 6 = 1 .  (a) p = 0.05, (b) p = 0.5, (c) p = 0.95. 

P C “ 9  P D  

0.05 - 1.6 9.78 x 10-7 0.975 
0.30 - 2.2 8.81 x 1.13 
0.50 - 2.9 0.194 1.30 
0.70 - 0.245 1.51 
0.95 - 0.22- 0.24 2.0-2.1 

TABLE 2. Values of constants in small h asymptotic solution for 
various p ,  double-branched solutions, 6 = 1. 

able to obtain a solution in the sense of achieving monotonic convergence of an alge- 
braic approximation to (6) but rather could only minimize a measure of the error for 
the approximation. Similarly we found that solutions became increasingly difficult to 
obtain a s p  --f i with none being found forp > 0.95. In figure 2 it may be seen that the 
rolled-up double-spiral in the w plane rapidly reduces in size as p --f 1. This may 
suggest that in the p + 1 limit the spiral reduces to zero size so that the solution de- 
generates to  a trivial but exact and non-singular solution w = - A12 representing the 
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initial flat sheet. This would explain difficulties near p = 1 since the finite-difference 
formulation of (6) (see I) implicitly assumes the existence of a rolled-up portion. Thus, 
our results indicate that the unique spiral-type solution sought by Jiminez as a model 
for plane shear layer instability, does not exist. Further evidence for this conclusion 
has been given by Moore (1979) who has shown that the evolution of a plane vortex 
sheet of constant strength exhibits severe pathological behaviour. 

The Betz approximation may be readily applied to the double-branched spiral by 
assuming that the impulse of vorticity of a section of the infinite sheet initially in 
( - x, x) about its vortical centre of gravity, remains constant during the roll-up process. 
Retaining the definition of PP given in ( I  31, the result is simply Pp = 1 for all p .  This 
is in surprisingly poor agreement with the results of the present calculations given in 
table 2 as one might have expected some c,ancellation between the two branches, of 
the effects of the unrolled portion of the sheet, on the rate of angular impulse in the 
core. Note that for the double-branch spiral, the centre of vorticity of the portion of 
the sheet under consideration ( x  = 0) remains stationary during roll-up in contrast to  
the behaviour of the single spiral. I n  the rolled-up core the asymptotic circulation 
distribution is 

w.1 = 4 W p r ) P ,  

being the sum of one half of this quantity for each spiral arm. 

Appendix. Initial tip behaviour of a finite vortex sheet. 
Consider a finite, initially flat vortex sheet of length L in - L < x < 0, which is free 

to move under its own self induction for t >, 0. At t = 0, the sheet circulation distribu- 
tion r ( x )  is assumed to be asymptotic to ( 1 )  for somep as x -+ 0, so that a corresponding 
semi-infinite sheet can be defined as that described in 5 2.1 for the same p .  Denoting 
the finite sheet motion by z( I?, t ) ,  a relationship between the initial motions of the finite 
and semi-infinite sheets may be obtained by applying (2) independently to z ( r , t )  
and z0(r, t )  a t  t = 0, and subtracting the results to yield, 

where y ( u )  = d F ( u ) / d u  with u = Id\. After isolating the singularity in the integral 
and rearranging the result, we have 

Fixing attention on the motion of the finite sheet near the tip 1x1 = 0, it follows from 
( 4 )  and (15) that for small t 

Z(0, t )  = G(0) (at)l@-P)+ [: (Z-Zo)] t+higher order terms. 
x=o 
1=0 

The first term in (1 6) is the initial tip motion induced by the y singularity while the 
second is that due to the rest of the y distribution. As p -+ 1 both terms become 
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singular. The singularities cancel, however, since using (9) and (15) and letting p -+ 1 
gives - 

+higher order terms. 

In  (17 )  the infinite tip velocity due to distant regions of the semi-infinite sheet (see 
5 2.2 (ii)) has effectively been subtracted and replaced by that due to the finite sheet. 
The near-tip roll-up is thus in general described initially by the similarity solution, 
with the appropriate P p ,  while the spiral centre moves according to (16) or (17). The 
p = 1 limit is the relevant solution for trailing vortex development from a delta wing 
a t  small incidence. It may be shown to be the trailing vortex equivalent to the steady 
conical flow solution for delta wing leading-edge vortex formation at high angles of 
incidence (Smith 1966). For a near tip circulation distribution given by (1) withp > 1, 
examination of the behaviour of the first term on the right of (14) as x -+ 0 shows that 
the tip velocity singularity vanishes, and there is thus no tendency for tip roll-up. 

This research was partially supported by the National Energy Research, Develop- 
ment and Demonstration Council of Australia under contract no. 9240. 
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